Abstract
Ketone bodies promote insulin secretion from isolated rat pancreatic islets in the presence of 5 mM-glucose, but are ineffective in its absence. At concentrations of 10 mM or less, the relative abilities of the ketone bodies to potentiate release are in the order D-3-hydroxybutyrate greater than DL-3-hydroxybutyrate greater than acetoacetate. The response curve relating insulin release to D-3-hydroxybutyrate concentration displays a threshold at 1 mM and a maximum at 10 mM. D-3-Hydroxybutyrate (5 mM, but not 10 mM) promotes insulin secretion in the presence of 5 mM concentrations of both L-arginine and DL-glyceraldehyde, but not with L-leucine, L-alanine, L-glutamate or 4-methyl-2-oxopentanoate. The oxidation rates of the exogenous ketone bodies do not correlate well with their capacities to promote insulin release. Moreover, the oxidation of 5 mM-D-3-hydroxybutyrate can be inhibited by 25% with methylmalonate (10 mM) without any diminution of release. The potentiation with D-3-hydroxybutyrate occurs without an observable increase in total islet cyclic AMP. However, a small net efflux matches the relative abilities of the ketone bodies to promote insulin release. With islets from 48 h-starved animals the insulin response is both diminished and less sensitive than in fed animals, since insulin secretion is not significantly raised until a threshold of 5 mM-D-3-hydroxybutyrate is reached. These results suggest that, in the rat at least, there should be a reappraisal of the physiological role of ketone bodies in the promotion of insulin release.
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献