Temperature regulation of the Tetrahymena mimbres glycosylphosphatidylinositol-anchored protein lipid composition

Author:

Ko Y G1,Hung C Y1,Thompson G A1

Affiliation:

1. Department of Botany, University of Texas, Austin, TX 78713, USA

Abstract

By incubating Tetrahymena mimbres cells with [3H]myristic acid, [3H]ethanolamine, [3H]inositol, and [3H]mannose, proteins having apparent molecular masses of 23 and 63 kDa were identified as the cells' principal glycosylphosphatidylinositol (GPI)-anchored proteins. These proteins accounted for as much as 2-5% of the whole cell proteins, with the higher levels being recovered from non-growing cells. The two proteins, gpi 23 and gpi 63, were purified to near homogeneity through Triton X-114/water partitioning followed by preparative SDS/PAGE. The lipid components of the GPI anchors were determined by chemical and enzymic hydrolysis. Both proteins were anchored by ceramides, with the principal long-chain base being C18 sphinganine containing an O-methyl group at the 3 position. O-Methylation was shown not to be an artifact of hydrolysis. When T. mimbres was cultured at 15 degrees C, the ceramide fatty acid component of the GPI anchors was principally palmitic acid (75% in gpi 23 and 76% in gpi 63). GPI anchors from 28 degrees C-grown cells contained mainly stearic acid (79% in gpi 23 and 70% in gpi 63). Temperature change had little effect on the long-chain-base composition. The direction of temperature-induced lipid change in the protein-bound anchors was the same as found in the inositolphosphorylceramide putative precursors of the protein anchors described in the accompanying paper [Hung, Ko and Thompson (1995) Biochem. J. 307, 107-113], but the detailed fatty acid compositions of the precursors and the protein-bound lipids were quite different. The precise metabolic regulation of anchor lipid chain length supports the concept that composition of the lipid anchor is important in the function and/or metabolism of the anchored protein.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3