A new family of rhamnogalacturonan lyases contains an enzyme that binds to cellulose

Author:

MCKIE Vincent A.1,VINCKEN Jean-Paul2,VORAGEN Alphons G. J.2,VAN DEN BROEK Lambertus A. M.2,STIMSON Elaine3,GILBERT Harry J.1

Affiliation:

1. Department of Biological and Nutritional Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, U.K.

2. Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 8129, 6700 EV Wageningen, The Netherlands

3. DuPont (U.K.) Ltd, 40 Station Road, Cambridge CB1 2UJ, U.K.

Abstract

Pseudomonas cellulosa is an aerobic bacterium that synthesizes an extensive array of modular cellulases and hemicellulases, which have a modular architecture consisting of catalytic domains and distinct non-catalytic carbohydrate-binding modules (CBMs). To investigate whether the main-chain-cleaving pectinases from this bacterium also have a modular structure, a library of P. cellulosa genomic DNA, constructed in λZAPII, was screened for pectinase-encoding sequences. A recombinant phage that attacked arabinan, galactan and rhamnogalacturonan was isolated. The encoded enzyme, designated Rgl11A, had a modular structure comprising an N-terminal domain that exhibited homology to Bacillus and Streptomyces proteins of unknown function, a middle domain that exhibited sequence identity to fibronectin-3 domains, and a C-terminal domain that was homologous to family 2a CBMs. Expression of the three modules of the Pseudomonas protein in Escherichia coli showed that its C-terminal module was a functional cellulose-binding domain, and the N-terminal module consisted of a catalytic domain that hydrolysed rhamnogalacturonan-containing substrates. The activity of Rgl11A against apple- and potato-derived rhamnogalacturonan substrates indicated that the enzyme had a strong preference for rhamnogalacturonans that contained galactose side chains, and which were not esterified. The enzyme had an absolute requirement for calcium, a high optimum pH, and catalysis was associated with an increase in absorbance at 235nm, indicating that glycosidic bond cleavage was mediated via a β-elimination mechanism. These data indicate that Rgl11A is a rhamnogalacturonan lyase and, together with the homologous Bacillus and Streptomyces proteins, comprise a new family of polysaccharide lyases. The presence of a family 2a CBM in Rgl11A, and in a P. cellulosa pectate lyase described in the accompanying paper [Brown, Mallen, Charnock, Davies and Black (2001) Biochem. J. 355, 155–165] suggests that the capacity to bind cellulose plays an important role in the activity of main-chain-cleaving Pseudomonas pectinases, in addition to cellulases and hemicellulases.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3