The therapeutic potential of positive and negative immune cell co-stimulation during inflammation

Author:

Gwyer E.1,Snelgrove R.1,Hussell T.1

Affiliation:

1. Kennedy Institute for Rheumatology, Imperial College London, 1, Aspenlea Road, London W6 8LH, U.K.

Abstract

Inflammatory cascades are initiated in response to alarm signals that may result from infection, malignant transformation or trauma. Immunity, however, must be controlled; otherwise damage may occur to otherwise healthy tissue within the same microenvironment. Similarly, peripheral tolerance mechanisms must ensure that autoreactive thymic or bone marrow emigrants do not respond upon encounter with the autoantigen. Organized lymphoid structures such as lymph nodes, spleen and Peyer's patches appear to regulate inflammation successfully, displaying controlled expansion and contraction. However, when immune cells flood into effector sites, the organization of T- and B-lymphocytes is lacking. What controls inflammatory cascades in lymph nodes but rarely in effector sites is not clear. We believe the difference lies in the Toll-like receptor ligand load, which is high in effector sites and drives uncontrolled inflammation. Similarly, we believe that initiation of autoimmune inflammation is initiated by the liberation of inflammatory signals due to infection or trauma. In this review, we highlight some of the molecules responsible for maintaining an activated T-cell phenotype, strategies to interrupt these therapeutically and the impact of ligating inhibitory receptors on antigen-presenting cells.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. From Crosstalk between Immune and Bone Cells to Bone Erosion in Infection;International Journal of Molecular Sciences;2019-10-17

2. Recent Patents on the Treatment of Type 1 Diabetes;Recent Patents on Endocrine, Metabolic & Immune Drug Discovery;2009-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3