Intracellular ceramide synthesis and protein kinase Cζ activation play an essential role in palmitate-induced insulin resistance in rat L6 skeletal muscle cells

Author:

POWELL Darren J.1,TURBAN Sophie1,GRAY Alexander2,HAJDUCH Eric1,HUNDAL Harinder S.1

Affiliation:

1. Division of Molecular Physiology, Faculty of Life Sciences, MSI/WTB Complex, University of Dundee, Dundee, DD1 5EH, Scotland

2. Division of Signal Transduction and Therapy, Faculty of Life Sciences, MSI/WTB Complex, University of Dundee, Dundee, DD1 5EH, Scotland

Abstract

Non-esterified fatty acids (NEFAs) have been implicated in the pathogenesis of skeletal muscle insulin resistance that may develop, in part, as a consequence of a direct inhibitory effect on early insulin signalling events. Here we report work investigating the mechanism by which palmitate (a saturated free fatty acid) inhibits insulin action in rat L6 myotubes. Palmitate suppressed the insulin-induced plasma membrane recruitment and phosphorylation of protein kinase B (PKB) and this was associated with a loss in insulin-stimulated glucose transport. The inhibition in PKB was not due to a loss in insulin receptor substrate (IRS)1 tyrosine phosphorylation, IRS-1/p85 (phosphoinositide 3-kinase) association or suppression in phosphatidyl 3,4,5 triphosphate synthesis, but was attributable to an elevated intracellular synthesis of ceramide (6-fold) from palmitate and a concomitant activation of protein kinase PKCζ (5-fold). Inhibitors of serine palmitoyl transferase suppressed the intracellular synthesis of ceramide from palmitate, prevented PKCζ activation, and antagonized the inhibition in PKB recruitment/phosphorylation and the loss in insulin-stimulated glucose transport elicited by the NEFA. Inhibiting the palmitate-induced activation of PKCζ with Ro 31.8220, also prevented the loss in the insulin-dependent phosphorylation of PKB caused by palmitate. These findings indicate that intracellular ceramide synthesis and PKCζ activation are important aspects of the mechanism by which palmitate desensitizes L6 muscle cells to insulin.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 220 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3