Analysis and elimination of protein perturbation in infrared difference spectra of acyl-chymotrypsin ester carbonyl groups by using 13C isotopic substitution

Author:

White A J1,Drabble K1,Ward S1,Wharton C W1

Affiliation:

1. School of Biochemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.

Abstract

I.r. spectroscopy has been applied to the study of hydrogen-bonding of the unique ester carbonyl group of acylchymotrypsins in the oxyanion hole of the enzyme. This catalytic device provides electrophilic stabilization of negative charge in the transition states and tetrahedral intermediates along the reaction pathway. The use of 13C isotope substitution of the ester carbonyl group reinforces the previous observation [White & Wharton (1990) Biochem. J. 270, 627-637] that the ester carbonyl group is significantly polarized in the ground state by hydrogen bonding in the oxyanion hole. I.r. difference spectra of [carbonyl-12C]-minus [carbonyl-13C]-cinnamoyl-chymotrypsin as well as each of these acylenzymes minus free enzyme are reported. These spectra show that the contribution of protein perturbation (i.e. spectral features that arise from the enzyme which is distorted on acylation) in [carbonyl-12C]cinnamoyl-chymotrypsin minus free enzyme spectra is significant. The contribution of the perturbation components of the spectra is pH-dependent and can represent up to 50% of the total absorbance in the spectral region from 1690 to 1740 cm-1. Use of the isotopic difference method has allowed problems associated with protein perturbation to be eliminated. Similar difference spectra are presented for dihydrocinnamoyl-chymotrypsin. In this case the effect of perturbation is very marked and leads to the cancellation of the band assigned to the non-bonded conformation of the acyl group which has previously only been observed at higher pH. The isotopic difference method again proves reliable and shows that the frequency difference previously used to calculate the ground-state electronic strain induced by the oxyanion-hole catalytic device is not affected by the perturbation, although the amplitudes of the spectral features are different. A study of the deacylation of cinnamoyl-chymotrypsin in water and deuterium oxide using both u.v. and i.r. spectroscopies has confirmed that the use of deuterium oxide as solvent has no serious effect on the deacylation behaviour of the enzyme. I.r. bands assigned to nonproductive and productive conformers decline identically during deacylation, which shows that the conformers are in dynamic exchange on the reaction time-scale.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3