Selective binding of phorbol esters and diacylglycerol by individual C1 domains of the PKD family

Author:

Chen Jun1,Deng Fan1,Li Jun1,Wang Q. Jane1

Affiliation:

1. Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, U.S.A.

Abstract

The PKD (protein kinase D) family are novel DAG (diacylglycerol) receptors. The twin C1 domains of PKD, designated C1a and C1b, have been shown to bind DAG or phorbol esters. However, their ligand-binding activities and selectivities have not been fully characterized. Here, binding activities of isolated C1a, C1b and intact C1a–C1b domains to DAG and phorbol esters were analysed. The isolated C1b domains of PKD isoforms bind [3H]PDBu ([20-3H]phorbol 12, 13-dibutyrate) with similar high affinities, while they exhibit weaker affinities towards a synthetic DAG analogue, DOG (1,2-dioctanoyl-sn-glycerol), as compared to the control. Mutating a conserved lysine residue at position 22 to tryptophan in C1b of PKD3 fully restores its affinity to DOG, indicating that this residue accounts for its weaker affinity to DOG. In contrast, the non-consensus residues in the isolated C1a domain of PKD mainly contribute to maintaining the protein's structural fold, since converting these residues in C1a of PKD3 to those in PKD1 or PKD2 drastically reduces the maximal number of active receptors, while only minimally impacting ligand-binding activities. Moreover, ligand-binding activities of C1a and C1b are sensitive to the structural context in an intact C1a–C1b domain and exhibit unique patterns of ligand selectivity. C1a and C1b in the intact C1a–C1b of PKD1 are opposite in selectivity for PDBu and DOG. In contrast, C1a of PKD3 exhibits 48-fold higher affinity to DOG as compared to C1b, although both domains bind PDBu with equivalent affinities. Accordingly, mutating C1a of a full-length PKD3–GFP greatly reduces DOG-induced plasma membrane translocation, but does not affect that induced by PMA. In summary, individual C1 domains of PKD isoforms differ in ligand-binding activity and selectivity, implying isoform-selective regulation of PKD by phorbol esters and DAG.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3