Negative regulation of the Nrf1 transcription factor by its N-terminal domain is independent of Keap1: Nrf1, but not Nrf2, is targeted to the endoplasmic reticulum

Author:

Zhang Yiguo1,Crouch Dorothy H.1,Yamamoto Masayuki2,Hayes John D.1

Affiliation:

1. Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, U.K.

2. Center for Tsukuba Advanced Research Alliance and Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305-8577, Japan

Abstract

Nrf1 (nuclear factor-erythroid 2 p45 subunit-related factor 1) and Nrf2 regulate ARE (antioxidant response element)-driven genes. At its N-terminal end, Nrf1 contains 155 additional amino acids that are absent from Nrf2. This 155-amino-acid polypeptide includes the N-terminal domain (NTD, amino acids 1–124) and a region (amino acids 125–155) that is part of acidic domain 1 (amino acids 125–295). Within acidic domain 1, residues 156–242 share 43% identity with the Neh2 (Nrf2-ECH homology 2) degron of Nrf2 that serves to destabilize this latter transcription factor through an interaction with Keap1 (Kelch-like ECH-associated protein 1). We have examined the function of the 155-amino-acid N-terminal polypeptide in Nrf1, along with its adjacent Neh2-like subdomain. Activation of ARE-driven genes by Nrf1 was negatively controlled by the NTD (N-terminal domain) through its ability to direct Nrf1 to the endoplasmic reticulum. Ectopic expression of wild-type Nrf1 and mutants lacking either the NTD or portions of its Neh2-like subdomain into wild-type and mutant mouse embryonic fibroblasts indicated that Keap1 controls neither the activity of Nrf1 nor its subcellular distribution. Immunocytochemistry showed that whereas Nrf1 gave primarily cytoplasmic staining that was co-incident with that of an endoplasmic-reticulum marker, Nrf2 gave primarily nuclear staining. Attachment of the NTD from Nrf1 to the N-terminus of Nrf2 produced a fusion protein that was redirected from the nucleus to the endoplasmic reticulum. Although this NTD–Nrf2 fusion protein exhibited less transactivation activity than wild-type Nrf2, it was nevertheless still negatively regulated by Keap1. Thus Nrf1 and Nrf2 are targeted to different subcellular compartments and are negatively regulated by distinct mechanisms.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference58 articles.

1. Cellular response to cancer chemopreventive agents: contribution of the antioxidant responsive element to the adaptive response to oxidative and chemical stress;Hayes;Biochem. Soc. Symp.,1999

2. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element;Nguyen;Annu. Rev. Pharmacol. Toxicol.,2003

3. Nrf2 controls constitutive and inducible expression of ARE-driven genes through a dynamic pathway involving nucleocytoplasmic shuttling by Keap1;Nguyen;J. Biol. Chem.,2005

4. Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene;Venugopal;Proc. Natl. Acad. Sci. U.S.A.,1996

5. Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors;Motohashi;Gene,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3