Manifold effects of palmitoylcarnitine on endoplasmic reticulum metabolism: 11β-hydroxysteroid dehydrogenase 1, flux through hexose-6-phosphate dehydrogenase and NADPH concentration

Author:

Wang Xudong1,Mick Gail J.1,Maser Edmund2,McCormick Kenneth1

Affiliation:

1. Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, U.S.A.

2. Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Str. 10, 24105 Kiel, Germany

Abstract

With the exception of the oxidation of G6P (glucose 6-phosphate) by H6PDH (hexose-6-phosphate dehydrogenase), scant information is available about other endogenous substrates affecting the redox state or the regulation of key enzymes which govern the ratio of the pyridine nucleotide NADPH/NADP. In isolated rat liver microsomes, NADPH production was increased, as anticipated, by G6P; however, this was strikingly amplified by palmitoylcarnitine. Subsequent experiments revealed that the latter compound, well within its physiological concentration range, inhibited 11β-HSD1 (11β-hydroxysteroid dehydrogenase 1), the bidirectional enzyme which interconnects inactive 11-oxo steroids and their active 11-hydroxy derivatives. Notably, palmitoylcarnitine also stimulated the antithetical direction of 11β-HSD1 reductase, namely dehydrogenase. This stimulation of H6PDH may have likewise contributed to the NADPH accretion. All told, the result of these enzyme modifications is, in a conjoint fashion, a sharp amplification of microsomal NADPH production. Neither the purified 11β-HSD1 nor that obtained following microsomal sonification were sensitive to palmitoylcarnitine inhibition. This suggests that the long-chain amphipathic acylcarnitines, given their favourable partitioning into the membrane lipid bilayer, disrupt the proficient kinetic and physical interplay between 11β-HSD1 and H6PDH. Finally, although IDH (isocitrate dehydrogenase) and malic enzyme are present in microsomes and increase NADPH concentration akin to that of G6P, neither had an effect on 11β-HSD1 reductase, evidence that the NADPH pool in the endoplasmic reticulum shared by the H6PDH/11β-HSD1 alliance is uncoupled from that governed by IDH and malic enzyme.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3