Regulation of cell volume in the perfused rat liver by hormones

Author:

vom Dahl S1,Hallbrucker C1,Lang F2,Häussinger D1

Affiliation:

1. Medizinische Universitätsklinik, Hugstetterstrasse 55, D-7800 Freiburg, Federal Republic of Germany

2. Physiologisches Institut der Universität Innsbruck, A-6010 Innsbruck, Austria

Abstract

The effect of hormones on cell volume was studied in isolated perfused rat liver by assessing the intracellular water space as the difference between a [3H]inulin- and a [14C]urea-accessible space. The intracellular water space (control value 559 +/- 7 microliters/g of liver; n = 88) increased on addition of insulin (35 nM) or phenylephrine (5 microM) by 12 or 8% respectively, whereas it decreased with cyclic AMP (cAMP; 50 microM), glucagon (100 nM) or adenosine (50 microM) by 9, 13 or 6% respectively. Both insulin and glucagon exerted half-maximal effects on cell volume and cellular K+ balance at hormone concentrations found physiologically in the portal vein. Adenosine-induced cell shrinkage was explained by a net K+ release from the liver. Phenylephrine (5 microM) led to cell swelling by about 8%, which was additive to insulin-induced swelling. Extracellular ATP (20 microM) induced cell shrinkage by about 6%; this was additive to adenosine-induced shrinkage. Vasopressin (15 nM) did not appreciably change cell volume, but induced marked cell shrinkage when glucagon or cAMP was present. Insulin- and phenylephrine-induced cell swelling was counteracted by cAMP. Hormone-induced changes of intracellular water space could sufficiently explain accompanying liver mass changes induced by glucagon, cAMP, adenosine or vasopressin, but not those by phenylephrine and extracellular ATP. The data show that liver cell volume is subject to hormonal regulation, in part owing to modification of cellular K+ balance. Glucagon- and insulin-induced cell volume changes occur already in the presence of physiological hormone concentrations. The effects of Ca2(+)-mobilizing hormones on cell volume are not uniform. In view of the recently established role of cell volume changes in modulating liver cell function, the present findings open a new perspective on the mechanisms of hormone action in liver, underlining our previous hypothesis that cell volume changes may represent a ‘second messenger’ of hormone action.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3