Novel compound variants of the AR and MAP3K1 genes are related to the clinical heterogeneity of androgen insensitivity syndrome

Author:

Cheng Yiping1234,Sun Yan5,Ji Yiming1234,Jiang Dongqing6,Teng Guoxin7,Zhou Xiaoming12,Zhou Xinli1234,Li Guimei5,Xu Chao1234ORCID

Affiliation:

1. Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, 324, Jing 5 Road, Jinan 250021, Shandong, China

2. Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324, Jing 5 Road, Jinan 250021, Shandong, China

3. Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021, Shandong, China

4. Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan 250021, Shandong, China

5. Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, 324, Jing 5 Road, Jinan 250021, Shandong, China

6. Department of Endocrinology and Metabolism, the Second Hospital of Shandong University, Jinan 250033, Shandong, China

7. Department of Pathology, the Second Hospital of Shandong University, Jinan 250033, Shandong, China

Abstract

Abstract Androgen insensitivity syndrome (AIS; OMIM 300068) is the most frequent cause of 46, XY disorders of sex development (DSD). However, the correlation between genotype and phenotype has not been determined. We conducted a systematic analysis of the clinical characteristics, hormone levels, ultrasonography data and histopathology of a 46, XY Chinese patient with AIS. The family was followed up for nearly 8 years. We applied whole-exome sequencing (WES) for genetic analysis of the pedigree and performed bioinformatic analysis of the identified variants. Human embryonic kidney 293T/17 (HEK293T/17) cells were transiently transfected with wild-type or mutant AR and MAP3K1 plasmid. Cell lysates were used to analyze androgen receptor (AR) production. A novel hemizygous AR variant (c.2070C>A, p. His690Glu) and a rare heterozygous MAP3K1 variant (c.778C>T, p. Arg260Cys) were identified by WES in the proband and her mother. Bioinformatic analysis predicted these two variants to be pathogenic. Multiple amino acid sequence alignments showed that p. His690 and p. Arg260 are conserved among various species. His690Glu is a mutation that decreased the AR production, whereas the Arg260Cys mutation increased the AR production. The novel compound variants of the AR and MAP3K1 genes also increased the production of AR protein. Thus, the phenotype of the patient may be caused by defects in both the AR and MAP3K1 signaling pathways. Compound variants of the AR and MAP3K1 genes resulted in a specific phenotype in this patient with AIS. WES might reveal genetic variants that explain the heterogeneity of AIS.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3