FSL-61 is a 6-nitroquinolone fluorogenic probe for one-electron reductases in hypoxic cells

Author:

Su Jiechuang1,Guise Christopher P.1,Wilson William R.1

Affiliation:

1. Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, 2013 Auckland, New Zealand

Abstract

One-electron reductases that reduce nitro compounds in hypoxic human tumour cells are poorly characterized, but are important for targeting hypoxia with nitroaromatic prodrugs. Fluorogenic probes with defined reductase profiles are needed to interrogate the activity of these enzymes in intact cells. In the present paper, we report a 6-nitroquinolone ester (FSL-61) as a fluorogenic probe for POR (NADPH:cytochrome P450 oxidoreductase) activity under hypoxia, and demonstrate its suitability of monitoring POR by flow cytometry. Reduction of FSL-61 by purified recombinant human POR generated the corresponding hydroxylamine, which was non-fluorescent, but was reduced further to the fluorescent amine in cells. Hydrolysis of the ester side chain facilitated cellular entrapment, enabling detection of heterogeneous POR expression in mixed populations of cells. In addition to POR, forced expression of three other diflavin reductases [MTRR (methionine synthase reductase), NDOR1 (NADPH-dependent diflavin oxidoreductase 1) and NOS2A (nitric oxide synthase 2A)] or NADPH:adrenoredoxin oxidoreductase in HCT116 cells significantly increased hypoxic activation of FSL-61. This reductase profile is similar to that for the dinitrobenzamide prodrug PR-104A under hypoxia, and fluorogenic metabolism of FSL-61 correlated significantly with PR-104A activation in a panel of 22 human tumour cell lines. The present study thus demonstrates the utility of FSL-61 for rapid and non-destructive interrogation of the activity of one-electron reductases in hypoxic cells at the single-cell level.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3