The regulation of rat liver xanthine oxidase. Involvement of thiol groups in the conversion of the enzyme activity from dehydrogenase (type D) into oxidase (type O) and purification of the enzyme

Author:

Corte E D1,Stirpe F.1

Affiliation:

1. Istituto di Patologia generale dell' Università di Bologna, 40126 Bologna, Italy

Abstract

1. The ‘xanthine oxidase’ activity of rat liver supernatant, most of which behaves as an NAD+-dependent dehydrogenase (type D) can be rapidly converted into an oxidase (type O) by thiol reagents such as tetraethylthiuram disulphide, copper sulphate, 5,5′-dithiobis-(2-nitrobenzoic acid), N-ethylmaleimide and p-hydroxymercuribenzoate. Treatment with copper sulphate, if prolonged, leads to almost complete inactivation of the enzyme. The effect of these reagents is prevented by dithioerythritol, and in all cases but that of N-ethylmaleimide is reversed by the same thiol. 2. Dithioerythritol prevents and reverses the conversion of xanthine oxidase from type D into type O brought about by storage of rat liver supernatant at -20°C, preincubation under anaerobic conditions, treatment with carbon or with diethyl ether, and reverses, but does not prevent, the conversion obtained by preincubation of the whole liver homogenate. 3. Conversion of the enzyme from type D into type O is effected by preincubation of rat liver supernatant with the sedimentable fraction from rat liver but not from chick or pigeon liver. The xanthine dehydrogenase activity of chick liver supernatant is not changed into an oxidase by preincubation with the sedimentable fraction from rat liver. 4. The enzyme activity of rat liver supernatant is converted from type D into type O during purification of the enzyme: the purified enzyme can be reconverted into type D by dithioerythritol. 5. The enzyme appears as an oxidase in the supernatant of rat heart, intestine, spleen, pancreas, lung and kidney. The enzyme of all organs but intestine can be converted into a dehydrogenase by dithioerythritol.

Publisher

Portland Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3