Steady-state metabolism and transport of d-glucose by rat small intestine in vitro

Author:

Pritchard Penelope J.1,Porteous John W.1

Affiliation:

1. Department of Biochemistry, University of Aberdeen, Marischal College, Aberdeen AB9 1AS, Scotland, U.K.

Abstract

1. Conditions of incubation of everted sacs of rat small intestine were selected to ensure that absorption of d-glucose by mucosal tissue from the incubation medium, intracellular metabolism of the absorbed glucose and transport of glucose through the intact intestinal tissue proceeded linearly with respect to time of incubation within stated time intervals. 2. Under these experimental conditions, steady intracellular concentrations of glucose and lactate were demonstrated. 3. The quantitative translocational and metabolic fate of absorbed glucose was determined under these steady-state conditions. About 25% of glucose absorbed from the external mucosal solution was accumulated (temporarily) within mucosal tissue and about 25% transported through the intact tissue into the external serosal solution; the remainder (about 50%) of the absorbed glucose was metabolized, 90% to lactate and 10% to CO2. Concomitant respiration rates were comparable with those reported for several other preparations of intestine and were stoicheiometrically in excess of the O2 metabolism required to account for the production of CO2 from the absorbed glucose. 4. Water transport through the everted sacs proceeded at an optimum rate under the experimental conditions selected. 5. Some other observations are recorded which influenced the design of the experiments and the interpretation of results; these include the initial physiological state of the animal, the anaesthetic used and the ionic composition of the incubation medium.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3