Blood–brain barrier lesion – a novel determinant of autonomic imbalance in heart failure and the effects of exercise training

Author:

Raquel Hiviny de Ataides1,Pérego Sany M.1,Masson Gustavo S.1,Jensen Leonardo2,Colquhoun Alison3,Michelini Lisete C.1ORCID

Affiliation:

1. 1Department of Physiology and Biophysics, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, SP, Brazil

2. 2School of Medicine, University of São Paulo, São Paulo, Brazil

3. 3Department of Cell Biology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, SP, Brazil

Abstract

Abstract Heart failure (HF) is characterized by reduced ventricular function, compensatory activation of neurohormonal mechanisms and marked autonomic imbalance. Exercise training (T) is effective to reduce neurohormonal activation but the mechanism underlying the autonomic dysfunction remains elusive. Knowing that blood–brain barrier (BBB) lesion contributes to autonomic imbalance, we sought now to investigate its involvement in HF- and exercise-induced changes of autonomic control. Wistar rats submitted to coronary artery ligation or SHAM surgery were assigned to T or sedentary (S) protocol for 8 weeks. After hemodynamic/autonomic recordings and evaluation of BBB permeability, brains were harvesting for ultrastructural analysis of BBB constituents, measurement of vesicles trafficking and tight junction’s (TJ) tightness across the BBB (transmission electron microscopy) and caveolin-1 and claudin-5 immunofluorescence within autonomic brain areas. HF-S rats versus SHAM-S exhibited reduced blood pressure, augmented vasomotor sympathetic activity, increased pressure and reduced heart rate variability, and, depressed reflex sensitivity. HF-S also presented increased caveolin-1 expression, augmented vesicle trafficking and a weak TJ (reduced TJ extension/capillary border), which determined increased BBB permeability. In contrast, exercise restored BBB permeability, reduced caveolin-1 content, normalized vesicles counting/capillary, augmented claudin-5 expression, increased TJ tightness and selectivity simultaneously with the normalization of both blood pressure and autonomic balance. Data indicate that BBB dysfunction within autonomic nuclei (increased transcytosis and weak TJ allowing entrance of plasma constituents into the brain parenchyma) underlies the autonomic imbalance in HF. Data also disclose that exercise training corrects both transcytosis and paracellular transport and improves autonomic control even in the persistence of cardiac dysfunction.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Portland Press Ltd.

Subject

General Medicine

Reference42 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3