Affiliation:
1. Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Ave., Campus Box 8228, St. Louis, MO 63110, U.S.A.
Abstract
RGS (regulators of G-protein signalling) modulate signalling by acting as GAPs (GTPase-activating proteins) for α subunits of heterotrimeric G-proteins. RGS14 accelerates GTP hydrolysis by Giα family members through its RGS domain and suppresses guanine nucleotide dissociation from Giα1 and Giα3 subunits through its C-terminal GoLoco domain. Additionally, RGS14 binds the activated forms of the small GTPases Rap1 and Rap2 by virtue of tandem RBDs (Raf-like Ras/Rap binding domains). RGS14 was identified in a screen for Rap2 effectors [Traver, Splingard, Gaudriault and De Gunzburg (2004) Biochem. J. 379, 627–632]. In the present study, we tested whether Rap binding regulates RGS14's biochemical activities. We found that RGS14 activity towards heterotrimeric G-proteins, as either a GAP or a GDI (guanine nucleotide dissociation inhibitor), was unaffected by Rap binding. Extending our biochemical characterization of RGS14, we also examined whether RGS14 can suppress guanine nucleotide exchange on Giα1 in the context of the heterotrimer. We found that a heterotrimer composed of N-myristoylated Giα1 and prenylated Gβγ is resistant to the GDI activity of the GoLoco domain of RGS14. This is consistent with models of GoLoco domain action on free Gα and suggests that RGS14 alone cannot induce subunit dissociation to promote receptor-independent activation of Gβγ-mediated signalling pathways.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献