Cytoplasmic interactions between phospholamban residues 1–20 and the calcium-activated ATPase of the sarcoplasmic reticulum

Author:

SHARMA Parveen1,PATCHELL Valerie B.2,GAO Yuan1,EVANS James S.1,LEVINE Barry A.12

Affiliation:

1. School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K.

2. Department of Physiology, Division of Medical Sciences, School of Medicine, University of Birmingham, Birmingham B15 2TT, U.K.

Abstract

Phospholamban regulates the activity of the calcium-activated ATPase (CaATPase) of cardiac sarcoplasmic reticulum. Equilibrium fluorescence studies have shown that the N-terminal cytoplasmic region of phospholamban (residues 1–20, domain 1) causes a decrease in the intrinsic tryptophan fluorescence of the CaATPase. The interaction of phospholamban residues 1–20 with the CaATPase also results in spectral changes for the extrinsic chromophore FITC covalently attached to the cytoplasmic region of the calcium pump. The fluorescence changes for both reporter groups correlate with a dissociation constant of ≈ 40µM for the complex between phospholamban residues 1–20 and the CaATPase. Complex formation is notably weaker when phospholamban 1–20 is titrated into the CaATPase in the presence of calcium, with altered conformational effects resulting from binding. The interaction of domain 1 of phospholamban with the CaATPase is also reduced upon phosphorylation of phospholamban 1–20 at Ser-16. This region of phospholamban 1–20 is shown by isotope-edited NMR study to be involved in interaction with the CaATPase. Binding of the phosphorylated peptide is not abolished, however, indicating that phospholamban 1–20 remains associated with the CaATPase even after phosphorylation. The data provide direct evidence for the interaction between the cytoplasmic regions of phospholamban and the pump, and are discussed in the context of the mechanism for inhibition of cardiac CaATPase activity by phospholamban.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3