Esterification of free fatty acids in adipocytes: a comparison between octanoate and oleate

Author:

GUO Wen1,CHOI Ji-Kyung1,KIRKLAND James L.1,CORKEY Barbara E.,HAMILTON James A.1

Affiliation:

1. Obesity Research Unit, Department of Medicine and Biophysics, Boston Medical Center, Room 803, 650 Albany Street, Boston, MA 02118, U.S.A.

Abstract

Medium-chain triacylglycerols (MCT) are present in milk, coconut oil and other foods, and are used therapeutically in special diets for certain disorders of lipid and glucose utilization. Recently, it has become apparent that MCT are not only oxidized in the liver, but are also present in lymph and fat tissue, particularly after chronic treatment. To evaluate the influence of MCT on metabolism in fat cells, we compared incorporation of octanoate and oleate into cellular triacylglycerols of 3T3-L1 adipocytes as well as their effects on preadipocyte differentiation. We found that less octanoate than oleate was stored and that more octanoate than oleate was oxidized. Octanoate was esterified to a greater extent at the sn-1,3 position of glyceryl carbons than at the sn-2 position, whereas the opposite was true for oleate. Glycerol release from fat cells pre-treated with octanoate was also greater than from cells pre-treated with oleate, presumably related to the preferential release of octanoate from the sn-1,3 position. Octanoate was not incorporated into lipids in undifferentiated cells and did not induce differentiation in these cells, whereas oleate was readily stored and actually induced differentiation. Incorporation of octanoate into lipids increased as cells differentiated, but reached a maximum of about 10% of the total stored fatty acids. If these effects in vitro also occur in vivo, substitution of octanoate for oleate or other long-chain fatty acids could have the beneficial effect of diminishing fat-cell number and lipid content.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3