Pseudokinases from a structural perspective

Author:

Taylor Susan S.123,Shaw Andrey45,Hu Jiancheng45,Meharena Hiruy S.6,Kornev Alexandr23

Affiliation:

1. Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, U.S.A.

2. Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, U.S.A.

3. Howard Hughes Medical Institute, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, U.S.A.

4. Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid, Box 8118, St. Louis, MO 63110, U.S.A.

5. Howard Hughes Medical Institute, Washington University School of Medicine, 660 South Euclid, Box 8118, St. Louis, MO 63110, U.S.A.

6. Department of Biomedical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, U.S.A.

Abstract

The catalytic (C) subunit of PKA was the first protein kinase structure to be solved, and it continues to serve as the prototype for the protein kinase superfamily. In contrast, by comparing many active and inactive kinases, we developed a novel ‘spine’ concept where every active kinase is composed of two hydrophobic spines anchored to a hydrophobic F-helix. The R-spine (regulatory spine) is dynamically assembled, typically by activation loop phosphorylation, whereas the C-spine (catalytic spine) is completed by the adenine ring of ATP. In the present paper, we show how the spine concept can be applied to B-Raf, specifically to engineer a kinase-dead pseudokinase. To achieve this, we mutated one of the C-spine residues in the N-lobe (N-terminal lobe), Ala481, to phenylalanine. This mutant cannot bind ATP and is thus kinase-dead, presumably because the phenylalanine ring fills the adenine-binding pocket. The C-spine is thus fused. However, the A481F mutant is still capable of binding wild-type B-Raf and wild-type C-Raf, and dimerization with a wild-type Raf leads to downstream activation of MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase] and ERK. The mutant requires dimerization, but is independent of Ras and does not require enzymatic activity. By distinguishing between catalytic and scaffold functions of B-Raf, we define kinases as being bifunctional and show that, at least in some cases, the scaffold function is sufficient for downstream signalling. Since this alanine residue is one of the most highly conserved residues in the kinome, we suggest that this may be a general strategy for engineering kinase-dead pseudokinases and exploring biological functions that are independent of catalysis.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3