Epigenetic Mechanisms in Development and Disease

Author:

Murrell Adele1,Hurd Paul J.2,Wood Ian C.3

Affiliation:

1. Epigenetics and Imprinting Laboratory, Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, U.K.

2. School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, U.K.

3. School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, U.K.

Abstract

Our advances in technology allow us to sequence DNA to uncover genetic differences not only between individuals, but also between normal and diseased cells within an individual. However, there is still a lot we have yet to understand regarding the epigenetic mechanisms that also contribute to our individuality and to disease. The 80th Biochemical Society Annual Symposium entitled Epigenetic Mechanisms in Development and Disease brought together some leading researchers in the field who discussed their latest insights into epigenetic mechanisms. Methylation of DNA has been the focus of much study from both a developmental perspective and imprinting of genes to its contribution to diseases such as cancer. Recently, the modification of methylcytosine to hydoxymethylcytosine within cells was uncovered, which opened a host of potential new mechanisms, and a flurry of new studies are underway to uncover its significance. Epigenetics is not confined to a study of DNA, and the post-translational modifications on the histone proteins have a significant role to play in regulating gene expression. There are many different modifications and, as shown at the Symposium, new variations used by cells are still being uncovered. We are some way to identifying how these modifications are added and removed and the protein complexes responsible for these changes. A focus on the function of the complexes and the interactions between individual modifications to regulate gene expression is advancing our knowledge, as discussed in the accompanying papers, although there are clearly plenty of opportunities for new breakthroughs to be made.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3