Resolving the functions of peptidylprolyl isomerases: insights from the mutagenesis of the nuclear FKBP25 enzyme

Author:

Gudavicius Geoff1,Soufari Heddy23,Upadhyay Santosh23,Mackereth Cameron D.23,Nelson Christopher J.1

Affiliation:

1. Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada, V8W 3P6

2. Institut Européen de Chimie et Biologie, Univ. Bordeaux, 2 rue Robert Escarpit, 33607 Pessac, France

3. Inserm, U869, ARNA Laboratory, Univ. Bordeaux, 33076 Bordeaux, France

Abstract

Peptidylprolyl isomerases have been implicated in chromatin regulation through their association with histones, chromatin-modifying enzymes and DNA-binding transcription factors. As with other post-translational modifications to proteins, a mechanistic understanding of the regulation of biological processes is fostered by loss-of-function studies both in vitro and in vivo. For peptidylprolyl isomerases, this can be accomplished with small-molecule inhibitors with high affinity for the isomerase active site or by mutation of amino acid residues that contribute to catalysis. In the present article, we review caveats to each of these approaches, and place emphasis on the thorough characterization of loss-of-function mutations in FKBPs (FK506-binding proteins). Using a case study of mutagenesis of the nuclear FKBP25 peptidylprolyl isomerase enzyme, we demonstrate that certain mutations generate a loss-of-function phenotype because they induce a complete loss of the FKBP domain fold, whereas other mutations are ‘surgical’ in that they ablate catalytic isomerase activity, while maintaining domain structure. Peptidylprolyl isomerases are thought to have both catalytic and non-catalytic functions, but differentiating between these mechanisms has proved to be challenging. The domain-destabilizing and surgical mutants described will facilitate the characterization of these two reported functions of peptidylprolyl isomerases.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3