Bioengineering tools to elucidate and control the fate of transplanted stem cells

Author:

Sridharan Rukmani1,Karp Jeffrey M.2,Zhao Weian3

Affiliation:

1. Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland

2. Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, U.S.A.

3. Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center and Chao Family Comprehensive Cancer Center, Department of Biomedical Engineering, and Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, 845 Health Sciences Road, Irvine, CA 92697, U.S.A.

Abstract

For the last decade, stem cell therapies have demonstrated enormous potential for solving some of the most tragic illnesses, diseases and tissue defects worldwide. Currently, more than 1300 clinical trials use stem cell therapy to solve a spectrum of cardiovascular, neurodegenerative and autoimmune diseases (http://www.clinicaltrials.gov, Jan 2014, search term: stem cell therapy; only currently recruiting and completed studies are included in the search). However, the efficacy of stem cell transplantation in patients has not been well established, and recent clinical trials have produced mixed results. We attribute this lack of efficacy in part to an incomplete understanding of the fate of stem cells following transplantation and the lack of control over cell fate, especially cell-homing and therapeutic functions. In the present review, we present two of our recently developed technologies that aim to address the above-mentioned bottlenecks in stem cell therapy specifically in the areas of MSCs (mesenchymal stem cells): (i) aptamer-based cell-surface sensors to study cellular microenvironments, and (ii) mRNA engineering technology to enhance the homing and immunomodulatory efficacy of transplanted stem cells. The first engineering strategy aims to elucidate the basic cellular signalling that occurs in the microenvironment of transplanted stem cells in real time. The second technique involves a simple mRNA transfection that improves the homing and anti-inflammatory capability of MSCs. Although we have specifically applied these engineering techniques to MSCs, these strategies can be incorporated for almost any cell type to determine and control the fate of transplanted stem cells.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3