Metabolic and cellular bases of sphingolipidoses

Author:

Sandhoff Konrad1

Affiliation:

1. Membrane Biology and Lipid Biochemistry Unit, Life and Medical Sciences Institute (LIMES), c/o Kekulé-Institut für Organische Chemie und Biochemie, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany

Abstract

Lysosomes are cellular stomachs. They degrade macromolecules and release their components as nutrients into the cytosol. Digestion of sphingolipids and other membrane lipids occurs at luminal intraendosomal vesicles and IMs (intraendosomal membranes). Sphingolipid and membrane digestion needs catabolic hydrolases with the help of lipid-binding proteins [SAPs (sphingolipid activator proteins)] and anionic lipids such as BMP [bis(monoacylglycero)phosphate]. Inherited defects of hydrolases or SAPs or uptake of cationic amphiphilic drugs cause lipid accumulation, eventually leading to death, especially in inherited sphingolipid storage diseases. IMs are formed during endocytosis and their lipid composition is adjusted for degradation. Their cholesterol content, which stabilizes membranes, decreases and the level of negatively charged BMP, which stimulates sphingolipid degradation, increases. At the level of late endosomes, cholesterol is transported out of the luminal vesicles preferentially by cholesterol-binding proteins, NPC (Niemann–Pick type C)-2 and NPC-1. Their defects lead to an endolysosomal accumulation of cholesterol and sphingolipids in Niemann–Pick type C disease. BMP and ceramide stimulate NPC-2-mediated cholesterol transfer, whereas sphingomyelin inhibits it. Anionic membrane lipids also activate sphingomyelin degradation by ASM (acid sphingomyelinase), facilitating cholesterol export by NPC-2. ASM is a non-specific phospholipase C and degrades more than 23 phospholipids. SAPs are membrane-perturbing proteins which solubilize lipids, facilitating glycolipid digestion by presenting them to soluble catabolic enzymes at acidic pH. High BMP and low cholesterol levels favour lipid extraction and membrane disintegration by saposin A and B. The simultaneous inherited defect of saposins A–D causes a severe membrane and sphingolipid storage disease, also disrupting the water permeability barrier of the skin.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Reference52 articles.

1. The role of sphingolipid metabolism in cutaneous permeability barrier formation;Breiden;Biochim. Biophys. Acta,2013

2. Very long chain sphingolipids: tissue expression, function and synthesis;Sandhoff;FEBS Lett.,2010

3. Loss of ceramide synthase 3 causes lethal skin barrier disruption;Jennemann;Hum. Mol. Genet.,2012

4. Mammalian ceramide synthases;Levy;IUBMB Life,2010

5. Sphingolipids: their metabolic pathways and the pathobiochemistry of neurodegenerative diseases;Kolter;Angew. Chem. Int. Ed.,1999

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3