Scratching beyond the surface — minimal actin assemblies as tools to elucidate mechanical reinforcement and shape change

Author:

Aufderhorst-Roberts Anders1ORCID,Staykova Margarita1

Affiliation:

1. Centre for Materials Physics, Department of Physics, Durham University, Durham DH1 3LE, U.K.

Abstract

The interaction between the actin cytoskeleton and the plasma membrane in eukaryotic cells is integral to a large number of functions such as shape change, mechanical reinforcement and contraction. These phenomena are driven by the architectural regulation of a thin actin network, directly beneath the membrane through interactions with a variety of binding proteins, membrane anchoring proteins and molecular motors. An increasingly common approach to understanding the mechanisms that drive these processes is to build model systems from reconstituted lipids, actin filaments and associated actin-binding proteins. Here we review recent progress in this field, with a particular emphasis on how the actin cytoskeleton provides mechanical reinforcement, drives shape change and induces contraction. Finally, we discuss potential future developments in the field, which would allow the extension of these techniques to more complex cellular processes.

Publisher

Portland Press Ltd.

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3