Functional characterization of the early steps of tetrapyrrole biosynthesis and modification in Desulfovibrio vulgaris Hildenborough

Author:

Lobo Susana A. L.1,Brindley Amanda2,Warren Martin J.2,Saraiva Lígia M.1

Affiliation:

1. Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal

2. Protein Science Group, Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, U.K.

Abstract

The biosynthesis of the tetrapyrrole framework has been investigated in the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough by characterization of the enzymes required for the transformation of aminolaevulinic acid into sirohydrochlorin. PBG (porphobilinogen) synthase (HemB) was found to be a zinc-dependent enzyme that exists in its native state as a homohexamer. PBG deaminase (HemC) was shown to contain the dipyrromethane cofactor. Uroporphyrinogen III synthase is found fused with a uroporphyrinogen III methyltransferase (HemD-CobA). Both activities could be demonstrated in this amalgamated protein and the individual enzyme activities were separated by dissecting the relevant gene to allow the production of two distinct proteins. A gene annotated in the genome as a bifunctional precorrin-2 dehydrogenase/sirohydrochlorin ferrochelatase was in fact shown to act only as a dehydrogenase and is simply capable of synthesizing sirohydrochlorin rather than sirohaem. Genome analysis also reveals a lack of any uroporphyrinogen III decarboxylase, an enzyme necessary for the classical route to haem synthesis. However, the genome does encode some predicted haem d1 biosynthetic enzymes even though the bacterium does not contain the cd1 nitrite reductase. We suggest that sirohydrochlorin acts as a substrate for haem synthesis using a novel pathway that involves homologues of the d1 biogenesis system. This explains why the uroporphyrinogen III synthase is found fused with the methyltransferase, bypassing the need for uroporphyrinogen III decarboxylase activity.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3