A synthetic oestrogen antagonist, tamoxifen, inhibits oestrogen-induced transcriptional, but not post-transcriptional, regulation of gene expression

Author:

ARAO Yukitomo1,YAMAMOTO Etsuko1,MIYATAKE Naoto1,NINOMIYA Yuichi1,UMEHARA Taisuke1,KAWASHIMA Hiroyuki1,MASUSHIGE Shoichi1,HASEGAWA Tadao1,KATO Shigeaki1

Affiliation:

1. Department of Agricultural Chemistry, Faculty of Agriculture, Tokyo University of Agriculture, Sakuragaoka, Setagayaku, Tokyo 156, Japan

Abstract

Oestrogen (E2) regulates the expression of its target genes at transcriptional and post-transcriptional levels. To clarify the mechanism of E2-induced post-transcriptional regulation, with attention to the involvement of the oestrogen receptor (ER), we studied the effect of tamoxifen (TAM), a synthetic E2 antagonist that inhibits ER-mediated transcription, on E2-induced transcriptional and post-transcriptional regulation of the chicken ovalbumin (OVA) gene in chick oviducts. Run-on analysis with oviduct nuclei isolated from E2-treated chicks showed that TAM treatment completely blocked E2-induced transcription of the OVA gene within 24 h without affecting ER gene expression. Likewise, the rate of transcription fell to below the limit of detection after E2 withdrawal from the chicks. Reflecting the transcription rate, OVA mRNA accumulated linearly in E2-treated chicks, and E2 withdrawal caused a rapid loss of OVA mRNA. However, in the chicks treated with TAM and E2, OVA mRNA was degraded slowly over 48 h with a half-life of 24 h, suggesting that TAM does not inhibit E2-induced mRNA stabilization. Moreover, E2-induced mRNA stabilization was observed even when transcription of the OVA gene was blocked by a transcription inhibitor. Western-blot analysis showed that the remaining OVA mRNA was translatable. Thus the present study indicates that E2 regulates expression of the OVA gene via distinct pathways at transcriptional and post-transcriptional levels.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3