Affiliation:
1. The Hormel Institute, University of Minnesota, Austin, MN 55912, U.S.A.
2. Cancer Research Institute, Arizona State University, Tempe, AZ 85287, U.S.A.
Abstract
The aim of this study was to clarify the relationship between the stimulatory effects of protein kinase C activators, including phorbol 12-myristate 13-acetate (PMA) and bryostatin, on the hydrolysis of phosphatidylcholine (PtdCho) and phosphatidylethanolamine (PtdEtn) and on PtdCho synthesis. The cell lines used were selected because of their differential responses to protein kinase C activators and included rat-1 fibroblasts, untransformed and A-raf-transformed NIH 3T3 fibroblasts and human HL60 leukaemia cells. Exposure of rat-1 and NIH 3T3 fibroblasts to 100 nM-PMA stimulated phospholipase D-mediated hydrolysis of phospholipids about 2- and 6-fold respectively. In contrast, 100 nM-PMA had similar (2.5-3.0-fold) stimulatory effects on PtdCho synthesis in these cell lines. In the untransformed NIH 3T3 cells, both PMA and bryostatin stimulated both phospholipid hydrolysis and PtdCho synthesis, with 100 nM-bryostatin being somewhat less potent than 100 nM-TPA. In contrast, in A-raf-transformed NIH 3T3 cells or in HL60 cells, only TPA, but not bryostatin, stimulated PtdCho synthesis. In these transformed cells, bryostatin had 3-fold, or higher, stimulatory effects on phospholipid hydrolysis. Addition of ionomycin, a Ca2(+)-elevating agent, partially restored the stimulatory effect of bryostatin on PtdCho synthesis, but it failed to modify the effect of bryostatin on phospholipid hydrolysis. These data indicate that increased phospholipid hydrolysis is not necessarily associated with increased PtdCho synthesis.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献