Stimulation of phosphatidylcholine synthesis by activators of protein kinase C is dissociable from increased phospholipid hydrolysis

Author:

Kiss Z1,Chattopadhyay J1,Pettit G R2

Affiliation:

1. The Hormel Institute, University of Minnesota, Austin, MN 55912, U.S.A.

2. Cancer Research Institute, Arizona State University, Tempe, AZ 85287, U.S.A.

Abstract

The aim of this study was to clarify the relationship between the stimulatory effects of protein kinase C activators, including phorbol 12-myristate 13-acetate (PMA) and bryostatin, on the hydrolysis of phosphatidylcholine (PtdCho) and phosphatidylethanolamine (PtdEtn) and on PtdCho synthesis. The cell lines used were selected because of their differential responses to protein kinase C activators and included rat-1 fibroblasts, untransformed and A-raf-transformed NIH 3T3 fibroblasts and human HL60 leukaemia cells. Exposure of rat-1 and NIH 3T3 fibroblasts to 100 nM-PMA stimulated phospholipase D-mediated hydrolysis of phospholipids about 2- and 6-fold respectively. In contrast, 100 nM-PMA had similar (2.5-3.0-fold) stimulatory effects on PtdCho synthesis in these cell lines. In the untransformed NIH 3T3 cells, both PMA and bryostatin stimulated both phospholipid hydrolysis and PtdCho synthesis, with 100 nM-bryostatin being somewhat less potent than 100 nM-TPA. In contrast, in A-raf-transformed NIH 3T3 cells or in HL60 cells, only TPA, but not bryostatin, stimulated PtdCho synthesis. In these transformed cells, bryostatin had 3-fold, or higher, stimulatory effects on phospholipid hydrolysis. Addition of ionomycin, a Ca2(+)-elevating agent, partially restored the stimulatory effect of bryostatin on PtdCho synthesis, but it failed to modify the effect of bryostatin on phospholipid hydrolysis. These data indicate that increased phospholipid hydrolysis is not necessarily associated with increased PtdCho synthesis.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3