Aspartate-107 and leucine-109 facilitate efficient coupling of glutamine hydrolysis to CTP synthesis by Escherichia coli CTP synthase

Author:

IYENGAR Akshai1,BEARNE Stephen L.1

Affiliation:

1. Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5

Abstract

CTP synthase catalyses the ATP-dependent formation of CTP from UTP using either NH3 or l-glutamine as the nitrogen source. GTP is required as an allosteric effector to promote glutamine hydrolysis. In an attempt to identify nucleotide-binding sites, scanning alanine mutagenesis was conducted on a highly conserved region of amino acid sequence (residues 102—118) within the synthase domain of Escherichia coli CTP synthase. Mutant K102A CTP synthase exhibited wild-type activity with respect to NH3 and glutamine; however, the R105A, D107A, L109A and G110A enzymes exhibited wild-type NH3-dependent activity and affinity for glutamine, but impaired glutamine-dependent CTP formation. The E103A, R104A and H118A enzymes exhibited no glutamine-dependent activity and were only partially active with NH3. Although these observations were compatible with impaired activation by GTP, the apparent affinity of the D107A, L109A and G110A enzymes for GTP was reduced only 2—4-fold, suggesting that these residues do not play a significant role in GTP binding. In the presence of GTP, the kcat values for glutamine hydrolysis by the D107A and L109A enzymes were identical with that of wild-type CTP synthase. Overall, the kinetic properties of L109A CTP synthase were consistent with an uncoupling of glutamine hydrolysis from CTP formation that occurs because an NH3 tunnel has its normal structure altered or fails to form. L109F CTP synthase was prepared to block totally the putative NH3 tunnel; however, this enzyme's rate of glutamine-dependent CTP formation and glutaminase activity were both impaired. In addition, we observed that mutation of amino acids located between residues 102 and 118 in the synthase domain can affect the enzyme's glutaminase activity, suggesting that these residues interact with residues in the glutamine amide transfer domain because they are in close proximity or via a conformationally dependent signalling mechanism.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3