Conditioned media of Kupffer and endothelial liver cells influence protein phosphorylation in parenchymal liver cells. Involvement of prostaglandins

Author:

Casteleijn E1,Kuiper J2,Van Rooij H C1,Koster J F1,Van Berkel T J2

Affiliation:

1. Department of Biochemistry I, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands

2. Division of Biopharmaceutics, Center for Bio-Pharmaceutical Sciences, University of Leiden, Sylvius Laboratories, P.O. Box 9503, 2300 RA Leiden, The Netherlands

Abstract

The possible role of Kupffer and endothelial liver cells in the regulation of parenchymal-liver-cell function was assessed by studying the influence of conditioned media of isolated Kupffer and endothelial cells on protein phosphorylation in isolated parenchymal cells. The phosphorylation state of three proteins was selectively influenced by the conditioned media. The phosphorylation state of an Mr-63,000 protein was decreased and the phosphorylation state of an Mr-47,000 and an Mr-97,000 protein was enhanced by these media. These effects could be mimicked by adding either prostaglandin E1, E2 or D2. Both conditioned media and prostaglandins stimulated the phosphorylase activity in parenchymal liver cells, suggesting that the Mr-97,000 phosphoprotein might be phosphorylase. Parenchymal liver cells secrete a phosphoprotein of Mr-63,000 and pI 5.0-5.5. The phosphorylation of this protein is inhibited by Kupffer- and endothelial-liver-cell media, and prostaglandins E1, E2 and D2 had a similar effect. The data indicate that Kupffer and endothelial liver cells secrete factors which influence the protein phosphorylation in parenchymal liver cells. This forms further evidence that products from non-parenchymal liver cells, in particular prostaglandin D2, might regulate glucose homoeostasis and/or other specific metabolic processes inside parenchymal cells. This stresses the concept of cellular communication inside the liver as a way by which the liver can rapidly respond to extrahepatic signals.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3