Studies on the autophosphorylation of the insulin receptor from human placenta. Analysis of the sites phosphorylated by two-dimensional peptide mapping

Author:

Tavaré J M1,Denton R M1

Affiliation:

1. Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, U.K.

Abstract

1. A partially purified preparation of human placental insulin receptors was incubated with [gamma-32P]ATP in the presence or absence of insulin. The 32P-labelled insulin-receptor beta-subunits were then isolated, cleaved with trypsin followed by protease V8 and the [32P]phosphopeptides generated were analysed by thin layer electrophoresis and chromatography. This approach revealed that insulin stimulates autophosphorylation of the insulin-receptor beta-subunit in vitro on at least seven tyrosine residues distributed among three distinct domains. 2. One domain (domain 2), containing tyrosine residues 1146, 1150 and 1151 was the most rapidly phosphorylated and could be recovered as mono-, di- and triphosphorylated peptides cleaved by trypsin at Arg-1143 and either Lys-1153 or Lys-1156. Multiple phosphorylation of this domain appears to partially inhibit the cleavage at Lys-1153 by trypsin. 3. In a second domain (domain 3) containing two phosphorylated tyrosine residues at positions 1316 and 1322 the tyrosines were phosphorylated more slowly than those in domain 2. This domain is close to the C-terminus of the beta-subunit polypeptide chain. 4. At least two further tyrosine residues appeared to be phosphorylated after those in domains 2 and 3. These residues probably residue within a domain lying in close proximity to the inner face of the plasma membrane containing tyrosines 953, 960 and 972, but conclusive evidence is still required. 5. The two-dimensional thin-layer analysis employed in this study to investigate insulin-receptor phosphorylation has several advantages over previous methods based on reverse-phase chromatography. It allows greater resolution of 32P-labelled tryptic peptides and, when coupled to radioautography, is considerably more sensitive. The approach can be readily adapted to study phosphorylation of the insulin receptor within intact cells.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 108 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3