Sulphydryl groups in the template-primer-binding domain of murine leukaemia virus reverse transcriptase. Identification and functional analysis of cysteine-90

Author:

Basu S1,Basu A1,Modak M J1

Affiliation:

1. Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, U.S.A.

Abstract

Treatment of murine leukaemia virus reverse transcriptase with benzophenone 4-maleimide inactivates DNA polymerase activity, but has no effect on the RNAase H function. Kinetic measurements indicated that benzophenone 4-maleimide is a competitive inhibitor with respect to template-primer binding, but is non-competitive with respect to dNTP binding. Enzyme modified with benzophenone 4-maleimide cannot bind template-primer or primer alone, as judged by u.v.-mediated cross-linking of radiolabelled substrates. Of the eight cysteine residues in murine leukaemia virus reverse transcriptase, only two were modified by benzophenone 4-maleimide, which were identified as Cys-90 and Cys-310 by comparative tryptic-peptide mapping and amino acid composition analysis. Inclusion of template-primer or primer alone in the modification mixture protected only Cys-90 from modification by benzophenone 4-maleimide. To investigate the role of Cys-90 in detail, we converted it to alanine by site-directed mutagenesis. The mutant enzyme, however, exhibited no loss either of DNA polymerase or of RNAase H activity. These results indicate that Cys-90 is located in a domain of murine leukaemia virus reverse transcriptase that binds template-primer, but may not have a direct role in the enzymic function of the enzyme. Ala-90 mutant murine leukaemia virus reverse transcriptase is at least 10-fold more susceptible to heat inactivation than is the wild-type enzyme, which suggests that Cys-90 in murine leukaemia virus reverse transcriptase may play a role in maintaining structural integrity.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3