Protein-tyrosine kinase CAKβ/PYK2 is activated by binding Ca2+/calmodulin to FERM F2 α2 helix and thus forming its dimer

Author:

Kohno Takayuki1,Matsuda Eiko1,Sasaki Hiroko1,Sasaki Terukatsu1

Affiliation:

1. The Department of Biochemistry, Cancer Research Institute, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-Ku, Sapporo 060-8556, Japan

Abstract

CAKβ (cell adhesion kinase β)/PYK2 (proline-rich tyrosine kinase 2) is the second protein-tyrosine kinase of the FAK (focal adhesion kinase) subfamily. It is different from FAK in that it is activated following an increase in cytoplasmic free Ca2+. In the present study we have investigated how Ca2+ activates CAKβ/PYK2. Calmodulin-agarose bound CAKβ/PYK2, but not FAK, in the presence of CaCl2. An α-helix (F2-α2) present in the FERM (band four-point-one, ezrin, radixin, moesin homology) F2 subdomain of CAKβ/PYK2 was the binding site of Ca2+/calmodulin; a mutant of this region, L176A/Q177A (LQ/AA) CAKβ/PYK2, bound to Ca2+/calmodulin much less than the wild-type. CAKβ/PYK2 is known to be prominently tyrosine phosphorylated when overexpressed from cDNA. The enhanced tyrosine phosphorylation was inhibited by W7, an inhibitor of calmodulin, and by a cell-permeable Ca2+ chelator and was almost defective in the LQ/AA-mutant CAKβ/PYK2. CAKβ/PYK2 formed a homodimer on binding of Ca2+/calmodulin, which might then induce a conformational change of the kinase, resulting in transphosphorylation within the dimer. The dimer was formed at a free-Ca2+ concentration of 8–12 μM and was stable at 500 nM Ca2+, but dissociated to a monomer in a Ca2+-free buffer. The dimer formation of CAKβ/PYK2 FERM domain was partially defective in the LQ/AA-mutant FERM domain and was blocked by W7 and by a synthetic peptide with amino acids 168–188 of CAKβ/PYK2, but not by a peptide with its LQ/AA-mutant sequence. It is known that the F2-α2 helix is found immediately adjacent to a hydrophobic pocket in the FERM F2 lobe, which locks, in the autoinhibited FAK, the C-lobe of the kinase domain. Our results indicate that Ca2+/calmodulin binding to the FERM F2-α2 helix of CAKβ/PYK2 releases its kinase domain from autoinhibition by forming a dimer.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3