Affiliation:
1. Department of Biology and Pharmacology, Faculties of Science and Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1
Abstract
Desensitization of rat pancreatic acinar cells with 0.1 mM carbamoylcholine (Cch) or 0.5 nM caerulein (CAE), a cholecystokinin (CCK) agonist, altered the subsequent secretory responses to these two agonists. Changes in receptor affinities, shifts in receptor populations, receptor internalization and phosphorylation are the major modifications affecting the muscarinic and CCK receptors in response to desensitization. In this study, post-receptor alterations were examined in order to explain the altered enzyme secretion. Cch or CAE desensitization resulted in decreased Ca2+ release in response to CAE and Cch respectively. Under desensitizing conditions, the biochemical and pharmacological properties of the InsP3 receptor were not affected. Control and desensitized acini had similar Bmax. and KD values. The Ca(2+)-channel property of the InsP3 receptor was not affected, either, since Ca2+ release in response to increasing concentrations of InsP3 remained comparable in both groups of saponin-permeabilized acini. Finally, the quantities of InsP3 formed in response to Cch and CAE, measured by InsP3 radioreceptor assay, were significantly decreased in the Cch- and CAE-desensitized groups, and these decreases were not due to increased InsP3 turnover. These new data indicate that desensitization of acinar cells with Cch and CAE causes post-receptor modifications resulting in decreased InsP3 formation and decreased intracellular Ca2+ mobilization. It is suggested that the attenuated Ca2+ response is related to a decreased formation of InsP3 from PtdInsP2 hydrolysis and that phospholipase C could be the immediate target of this regulation.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献