Caenorhabditis elegans pseudouridine synthase 1 activity in vivo: tRNA is a substrate, but not U2 small nuclear RNA

Author:

PATTON Jeffrey R.1,PADGETT Richard W.2

Affiliation:

1. Department of Pathology and Microbiology, University of South Carolina, School of Medicine, Columbia, SC 29208, U.S.A.

2. Waksman Institute, Department of Molecular Biology and Biochemistry, and Cancer Institute of New Jersey, Rutgers University, Piscataway, NJ 08854-8020, U.S.A.

Abstract

The formation of pseudouridine (Ψ) from uridine is post-transcriptional and catalysed by pseudouridine synthases, several of which have been characterized from eukaryotes. Pseudouridine synthase 1 (Pus1p) has been well characterized from yeast and mice. In yeast, Pus1p has been shown to have dual substrate specificity, modifying uridines in tRNAs and at position 44 in U2 small nuclear RNA (U2 snRNA). In order to study the in vivo activity of a metazoan Pus1p, a knockout of the gene coding for the homologue of Pus1p in Caenorhabditis elegans was obtained. The deletion encompasses the first two putative exons and includes the essential aspartate that is required for activity in truA pseudouridine synthases. The locations of most modified nucleotides on small RNAs in C. elegans are not known, and the positions of Ψ were determined on four tRNAs and U2 snRNA. The uridine at position 27 of tRNAVal (AAC), a putative Pus1p-modification site, was converted into Ψ in the wild-type worms, but the tRNAVal (AAC) from mutant worms lacked the modification. Ψ formation at positions 13, 32, 38 and 39, all of which should be modified by other pseudouridine synthases, was not affected by the loss of Pus1p. The absence of Pus1p in C. elegans had no effect on the modification of U2 snRNA in vivo, even though worm U2 snRNA has a Ψ at position 45 (the equivalent of yeast U2 snRNA position 44) and at four other positions. This result was unexpected, given the known dual specificity of yeast Pus1p.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3