Specificity of S'1 and S'2 subsites of human tissue kallikrein using the reactive-centre loop of kallistatin: the importance of P'1 and P'2 positions in design of inhibitors

Author:

PIMENTA Daniel C.1,FOGAÇA Sandro E.1,MELO Robson L.1,JULIANO Luiz1,JULIANO Maria A.1

Affiliation:

1. Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo 04044-020, Brazil

Abstract

We have demonstrated that the S´1 and S´2 subsites of human tissue kallikrein (hK1) play determinant roles in the recognition and hydrolysis of substrates. The presence of serine at position P´1 and arginine at P´2 resulted in the best substrate, Abz-Ala-Ile-Lys-Phe-Phe-Ser-Arg-Gln-EDDnp, which was derived from the kallistatin reactive-centre loop sequence and quencher groups o-aminobenzoic acid (Abz) and N-(2,4-dinitrophenyl)ethylenediamine (EDDnp). Serine and arginine are also the residues at positions P´1 and P´2 in human kininogen, from which hK1 releases Lys-bradykinin. Several peptide analogues of Abz-Ala-Ile-Lys-Phe-Phe-Ser-Arg-Gln-EDDnp, in which the Ser and Arg residues were substituted with various other amino acids, were synthesized and tested as substrates. Most of them were hydrolysed slowly, although they showed significant binding to hK1, as demonstrated by their competitive inhibition constants (Ki). Using this information, six peptides were designed, synthesized and assayed as inhibitors of hK1. Abz-Lys-Phe-Phe-Pro-Arg-Gln-EDDnp, Abz-Lys-Phe-Arg-Pro-Arg-Gln-EDDnp and acetyl-Lys-Phe-Phe-Pro-Leu-Glu-NH2 inhibited hK1 in the range 20–30 nM (letters in italics denote the d-form of the amino acid). The peptide acetyl-Lys-Phe-Phe-Pro-Leu-Glu-NH2 was a weak inhibitor for other serine proteases, as indicated by the higher Ki values compared with hK1, but this peptide was a potent inhibitor of human plasma kallikrein, which has a Ki value of 8 nM. This result was surprising, since this enzyme is known to be a restricted arginyl-hydrolase. In conclusion, acetyl-Lys-Phe-Phe-Pro-Leu-Glu-NH2 can be used as a leader compound to design specific inhibitors for hK1, plasma kallikrein, or for both at same time, if the inhibition of kinin release is the main goal.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3