Reversibility of interleukin-1β-induced islet destruction and dysfunction by the inhibition of nitric oxide synthase

Author:

Corbett J A1,McDaniel M L1

Affiliation:

1. Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, U.S.A.

Abstract

We have examined the reversibility of NO-mediated islet dysfunction and destruction induced by interleukin-1 beta (IL-1 beta). Previous studies have shown that pretreatment of islets for 18 h with IL-1 beta results in an inhibition of glucose-stimulated insulin secretion that requires 4 days incubation in the absence of IL-1 beta to restore islet secretory function. In this study we use a sequential experimental design in which islets are first exposed to IL-1 beta for 18 h, and then treated with the NO synthase inhibitor NG-monomethyl-L-arginine (NMMA). Insulin secretion is inhibited by 98% after the 18 h incubation with IL-1 beta, and this inhibition is reversed in a time-dependent fashion by NMMA, with complete recovery of insulin secretion observed 8 h after the inhibition of NO synthase. Inhibition of NO synthase also restores IL-1 beta-induced inhibition of mitochondrial aconitase activity in a time-dependent fashion that mimics the recovery of glucose-stimulated insulin secretion by islets. Ferrous iron and the reducing agents cysteine and thiosulphate accelerate the rate of recovery of insulin secretion, and ferrous iron and thiosulphate stimulate the recovery of islet aconitase activity, suggesting that iron-sulphurcentre reconstitution may be involved in the recovery process. The recovery process also appears to require mRNA transcription, because the transcriptional inhibitor actinomycin D prevents the recovery of insulin secretion by islets after the inhibition of NO synthase. Although IL-1 beta induces the co-expression of NO synthase and cyclo-oxygenase by islets, cyclo-oxygenase is not involved in the recovery of glucose-stimulated insulin secretion. Inhibition of NO synthase also prevents IL-1 beta-induced islet destruction, which otherwise occurs during a 96 h continuous exposure to this cytokine. The destructive effects of IL-1 beta on islet viability are prevented if NMMA is added to islet cultures during the first 24 h of exposure to IL-1 beta, but islet destruction is not prevented if NMMA is added after the first 48 h exposure to IL-1 beta. These results show that IL-1 beta-induced islet dysfunction is reversed by the inhibition of NO synthase, that recovery of insulin secretion is stimulated by iron and reducing agents, and that the recovery process appears to require mRNA transcription. We also show that it is possible to rescue islets from the destructive effects of IL-1 beta if NO synthase is inhibited early after its induction.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3