Development and validation of a nomogram to predict synchronous lung metastases in patients with ovarian cancer: a large cohort study

Author:

Yuan Yufei1,Guo Fanfan1,Wang Ruoran2,Zhang Yidan1,Bai Guiqin3ORCID

Affiliation:

1. Medicine Department, Xi’an Jiaotong University, Xi’an, China

2. Department of Critical Care Medicine, West China Hospital of Sichuan University, Sichuan, China

3. Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China

Abstract

Abstract Purpose: Lung metastasis is an independent risk factor affecting the prognosis of ovarian cancer patients. We developed and validated a nomogram to predict the risk of synchronous lung metastases in newly diagnosed ovarian cancer patients. Methods: Data of ovarian cancer patients from the Surveillance, Epidemiology, and Final Results (SEER) database between 2010 and 2015 were retrospectively collected. The model nomogram was built on the basis of logistic regression. The consistency index (C-index) was used to evaluate the discernment of the synchronous lung metastasis nomogram. Calibration plots were drawn to analyze the consistency between the observed probability and predicted probability of synchronous lung metastases. The Kaplan–Meier method was used to estimate overall survival rate, and influencing factors were included in multivariate Cox regression analysis (P<0.05) to determine the independent prognostic factors of synchronous lung metastases. Results: Overall, 16059 eligible patients were randomly divided into training (n=11242) and validation cohorts (n=4817). AJCC T, N stage, bone metastases, brain metastases, and liver metastases were evaluated as predictors of synchronous lung metastases. Finally, a nomogram was constructed. The nomogram based on independent predictors was calibrated and showed good discriminative ability. Mixed histological types, chemotherapy, and primary site surgery were factors affecting the overall survival of patients with synchronous lung metastases. Conclusion: The clinical prediction model has high accuracy and can be used to predict lung metastasis risk in newly diagnosed ovarian cancer patients, which can guide the treatment of patients with synchronous lung metastases.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3