Comparative analysis of extracellular proteomes reveals putative effectors of the boxwood blight pathogens, Calonectria henricotiae and C. pseudonaviculata

Author:

Yang Xiao12ORCID,McMahon Michael B.1,Ramachandran Sowmya R.12,Garrett Wesley M.3,LeBlanc Nicholas24,Crouch Jo Anne4,Shishkoff Nina1,Luster Douglas G.1

Affiliation:

1. United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Foreign Disease-Weed Science Research Unit, Fort Detrick, MD, U.S.A.

2. Oak Ridge Institute for Science and Education, ARS Research Participation Program, Oak Ridge, TN, U.S.A.

3. USDA, ARS, Animal Biosciences and Biotechnology Laboratory, Beltsville, MD, U.S.A.

4. USDA, ARS, Mycology and Nematology Genetic Diversity and Biology Laboratory, Beltsville, MD, U.S.A.

Abstract

Abstract Calonectria henricotiae (Che) and C. pseudonaviculata (Cps) are destructive fungal pathogens causing boxwood blight, a persistent threat to horticultural production, landscape industries, established gardens, and native ecosystems. Although extracellular proteins including effectors produced by fungal pathogens are known to play a fundamental role in pathogenesis, the composition of Che and Cps extracellular proteins has not been examined. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and bioinformatics prediction tools, 630 extracellular proteins and 251 cell membrane proteins of Che and Cps were identified in the classical secretion pathway in the present study. In the non-classical secretion pathway, 79 extracellular proteins were identified. The cohort of proteins belonged to 364 OrthoMCL clusters, with the majority (62%) present in both species, and a subset unique to Che (19%) and Cps (20%). These extracellular proteins were predicted to play important roles in cell structure, regulation, metabolism, and pathogenesis. A total of 124 proteins were identified as putative effectors. Many of them are orthologs of proteins with documented roles in suppressing host defense and facilitating infection processes in other pathosystems, such as SnodProt1-like proteins in the OrthoMCL cluster OG5_152723 and PhiA-like cell wall proteins in the cluster OG5_155754. This exploratory study provides a repository of secreted proteins and putative effectors that can provide insights into the virulence mechanisms of the boxwood blight pathogens.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3