Vectorial Ca2+ flux from the extracellular space to the endoplasmic reticulum via a restricted cytoplasmic compartment regulates inositol 1,4,5-trisphosphate-stimulated Ca2+ release from internal stores in vascular endothelial cells

Author:

Cabello O A1,Schilling W P1

Affiliation:

1. Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, U.S.A.

Abstract

Depletion of the Ins(1,4,5)P3-sensitive intracellular Ca2+ store of vascular endothelial cells after selective inhibition of the endoplasmic-reticulum (ER) Ca2+ pump by thapsigargin or 2,5-di-t-butylhydroquinone (BHQ) increases Ca2+ influx from the extracellular space in the absence of phosphoinositide hydrolysis. One model to account for these results suggests a close association between the internal store and the plasmalemma, allowing for the vectorial movement of Ca2+ from the extracellular space to the ER. Furthermore, recent evidence suggests that Ins(1,4,5)P3-induced Ca2+ release from intracellular stores is regulated by the free cytosolic Ca2+ concentration ([Ca2+]i). Thus agonist-induced Ca2+ entry may directly regulate Ca2+ release from internal stores. To test these hypotheses, we examined the effect of 1-(beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl)-1H-imidazole (SKF 96365), an inhibitor of Ca2+ influx, on unidirectional 45Ca2+ efflux (i.e. retrograde radioisotope flux via the influx pathway) and on [Ca2+]i as measured by fura-2. Bradykinin produced a transient increase in [Ca2+]i, reflecting release of Ca2+ from internal stores, and a sustained increase indicative of Ca2+ influx. In the absence of agonist, 45Ca2+ efflux was slow and monoexponential with time. Addition of BK dramatically increased 45Ca2+ efflux; 50-60% of the 45Ca2+ associated with the cell monolayer was released within 2 min after addition of bradykinin. Both the bradykinin-induced change in [Ca2+]i and the stimulation of 45Ca2+ efflux was completely blocked by loading the cells with the Ca2+ chelator BAPTA. At a supermaximal concentration of bradykinin (50 nM), SKF 96365 (50 microM) inhibited the rise in [Ca2+]i attributed to influx without affecting release from internal stores. At a threshold concentration of bradykinin (2 nM), SKF 96365 blocked influx, but stimulated Ca2+ release from internal stores, as indicated by increases in both the transient component of the fura-2 response and 45Ca2+ efflux. Thapsigargin (200 nM) and BHQ (10 microM) produced an increase in 45Ca2+ efflux that was completely blocked by SKF 96365 or by cytosolic loading with BAPTA. These results suggest the existence of a restricted sub-plasmalemmal space that is defined by an area of surface membrane which contains the Ca(2+)-influx pathway but is devoid of Ca2+ pumps, and by a section of ER that is rich in thapsigargin-sensitive Ca(2+)-pump units.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3