Incorporation of [32P]orthophosphate into brain-slice phospholipids and their precursors. Effects of electrical stimulation

Author:

Pumphrey A. M.1

Affiliation:

1. Department of Biochemistry, Institute of Psychiatry (British Postgraduate Medical Federation, University of London), De Crespigny Park, London S.E. 5

Abstract

1. The incorporation of [32P]phosphate into phospholipids was measured in slices cut from the pial surface of guinea-pig cerebral cortex; incorporation into the phosphorus of some water-soluble precursors of phospholipid was measured under similar conditions. 2. Slices subjected to overall electrical stimulation at a frequency of 5pulses/sec. differed from control slices in their pattern of phospholipid labelling. After 1hr. of stimulation, incorporation of [32P]phosphate into phosphatidylcholine, ethanolamine phospholipid and cardiolipin was respectively 54, 55 and 58% of the control value, and that into phosphatidylinositol was 186% of control. Phosphatidic acid labelling tended to increase with electrical stimulation, but the statistical significance of this change was marginal. Labelling of phosphatidylglycerol and di- and tri-phosphoinositides was not affected significantly by electrical stimulation. 3. Electrical stimulation of the tissue altered the specific radioactivities of water-soluble precursors of phospholipid. 4. The turnover rates of the phosphate groups of phospholipids were estimated approximately from the specific radioactivities of phospholipids and their precursors. Phosphatidylinositol (and its lipid-soluble precursors) showed the largest change in turnover rate in response to electrical stimulation of the tissue; the turnover rates of other lipids were also affected. Changes in the specific radioactivity of phospholipids did not correspond to changes in turnover in these experiments.

Publisher

Portland Press Ltd.

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3