Glycosylphosphatidylinositol-specific phospholipase C regulates transferrin endocytosis in the African trypanosome

Author:

Subramanya Sandesh1,Hardin C. Frank1,Steverding Dietmar2,Mensa-Wilmot Kojo1

Affiliation:

1. Department of Cellular Biology, University of Georgia, 724 Biological Sciences Building, Athens, GA 30602, U.S.A.

2. BioMedical Research Centre, School of Medicine, Health Policy and Practice, University of East Anglia, Norwich NR4 7TJ, U.K.

Abstract

GPI-PLC (glycosylphosphatidylinositol-specific phospholipase C) is expressed in bloodstream-form Trypanosoma brucei, a protozoan that causes human African trypanosomiasis. Loss of genes encoding GPI-PLC reduces the virulence of a pleomorphic strain of the parasite, for reasons that are not clear. In the present paper, we report that GPI-PLC stimulates endocytosis of transferrin by 300–500%. Surprisingly, GPI-PLC is not detected at endosomes, suggesting that the enzyme does not interact directly with the endosomal machinery. We therefore hypothesized that a diffusible product of the GPI-PLC enzyme reaction [possibly DAG (diacylglycerol)] mediated the biological effects of the protein. Two sets of data support this assertion. First, a catalytically inactive Q81L mutant of GPI-PLC, expressed in a GPI-PLC-null background, had no effect on endocytosis, indicating that enzyme activity is essential for the protein to stimulate endocytosis. Secondly, the exogenous DAGs OAG (1-oleyl-2-acetyl-sn-glycerol) and DMG (dimyristoylglycerol) independently stimulated endocytosis of transferrin. Furthermore, the DAG mimic PMA, a phorbol ester, also activated endocytosis in T. brucei. DAG-stimulated endocytosis is a novel pathway in the trypanosome. We surmise that (i) GPI-PLC regulates transferrin endocytosis in T. brucei, (ii) GPI-PLC is a signalling enzyme, and (iii) DAG is a second messenger for GPI-PLC. We propose that regulation of endocytosis is a physiological function of GPI-PLC in bloodstream T. brucei.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference55 articles.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3