Polyamine catabolism in rodent and human cells in culture

Author:

Carper S W1,Tome M E2,Fuller D J M1,Chen J R1,Harari P M1,Gerner E W12

Affiliation:

1. University of Arizona Health Sciences Center, Department of Radiation Oncology, Tucson, AZ 85724, U.S.A.

2. Department of Biochemistry, Arizona Cancer Center, Tucson, AZ 85724, U.S.A.

Abstract

N1-Acetylspermidine (N1AcSpd) accumulates in late exponential phase, or after certain stresses such as heat shock, in both human tumour (A549) and rodent (HTC, CHO) cells, grown in medium containing an inhibitor of the FAD-dependent polyamine oxidase (PAO). Inhibition of PAO has little effect on cell growth or on the cellular content of the major polyamines, putrescine, spermidine or spermine, found in proliferating cells in culture, but decreases cellular putrescine content in heat shocked cells. Putrescine and spermidine are generated when N1AcSpd or N1-acetylspermine (N1AcSpm) respectively is added to either human or rodent cells depleted of the former amines by alpha-difluoromethylornithine. N1AcSpm is formed in polyamine-depleted human A549 cells when N1AcSpd is added to cultures treated with the PAO inhibitor. This reaction does not occur in either rodent line, suggesting that N1AcSpd can be converted directly into N1AcSpm in human, but not rodent, cells under specific conditions. The data presented demonstrate that a variety of human and rodent cells express PAO activity and catabolize polyamines by a mechanism which includes PAO. PAO activity is of little consequence to proliferating A549, HTC or CHO cells in culture, but does produce new putrescine in both late-exponential-phase and heat-shocked cells. These findings suggest that polyamine catabolism is part of a general response of both rodent and human cells to a variety of environmental and physiological stresses.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3