AIM2 inflammasome contributes to aldosterone-induced renal injury via endoplasmic reticulum stress

Author:

Wu Yong1ORCID,Yang Huan1,Xu Sujuan23,Cheng Ming1,Gu Jie1,Zhang Weichen1,Liu Shaojun1,Zhang Minmin1

Affiliation:

1. Department of Nephrology, Huashan Hospital and Nephrology Institute, Fudan University, Shanghai, China

2. Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China

3. Department of Nephrology, Hebei General Hospital, Shijiazhuang, Hebei Province, China

Abstract

Abstract Inflammatory response and renal fibrosis are the hallmarks of chronic kidney disease (CKD). However, the specific mechanism of aldosterone-induced renal injury in the progress of CKD requires elucidation. Emerging evidence has demonstrated that absent in melanoma 2 (AIM2)-mediated inflammasome activation and endoplasmic reticulum stress (ERS) play a pivotal role in the renal fibrosis. Here, we investigated whether overexpression or deficiency of AIM2 affects ERS and fibrosis in aldosterone-infused renal injury. Interestingly, we found that AIM2 was markedly expressed in the diseased proximal tubules from human and experimental CKD. Mechanically, overactivation of AIM2 aggravated aldosterone-induced ERS and fibrotic changes in vitro while knockdown of AIM2 blunted these effects in vivo and in vitro. By contrast, AIM2 deficiency ameliorated renal structure and function deterioration, decreased proteinuria levels and lowered systolic blood pressure in vivo; silencing of AIM2 blocked inflammasome-mediated signaling pathway, relieved ERS and fibrotic changes in vivo. Furthermore, mineralocorticoid receptor (MR) antagonist eplerenone and ERS inhibitor tauroursodeoxycholic acid (TUDCA) had nephroprotective effects on the basis of AIM2 overactivation in vitro, while they failed to produce a more remarkable renoprotective effect on the treatment of AIM2 silence in vitro. Notably, the combination of TUDCA with AIM2 knockdown significantly reduced proteinuria levels in vivo. Additionally, immunofluorescence assay identified that apoptosis-associated speck-like protein (ASC) recruitment and Gasdermin-D (GSDMD) cleavage respectively occurred in the glomeruli and tubules in vivo. These findings establish a crucial role for AIM2 inflammasome in aldosterone-induced renal injury, which may provide a novel therapeutic target for the pathogenesis of CKD.

Publisher

Portland Press Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3