Physical-chemical properties of C-phycocyanin isolated from an acido-thermophilic eukaryote, Cyanidium caldarium

Author:

Kao O H1,Edwards M R1,Berns D S1

Affiliation:

1. Division of Laboratories and Research, New York State Department of Health, New Scotland Avenue, Albany, N. Y. 12201, U.S.A.

Abstract

C-Phycocyanin from an acido-thermophilic eukaryotic alga, Cyanidium caldarium, was characterized with respect to subunit structure, absorption spectrum and fluorescence properties and was found to be similar to C-phycocyanins from mesophilic sources. The pH-dependence of fluorescence polarization and the changes in sedimentation velocity as a function of pH, concentration and temperature indicate the presence of extremely large amounts of unusually stable 19S aggregates. It was not possible to disaggregate this phycocyanin completely to monomer under normal conditions. The amino acid composition is similar to that of phycocyanins from other thermophilic and halophilic sources. The isoelectric point of this C-phycocyanin was 5.11, an unusually high value. The properties of this C-phycocyanin suggest an increase in protein stability as its mode of adaptation to the environmental stress of high temperature.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3