Insights into the role of heparan sulphate in fibroblast growth factor signalling

Author:

Harmer N.J.1

Affiliation:

1. Department of Biochemistry, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.

Abstract

Signalling from the FGFs (fibroblast growth factors) is crucial for the correct development and homoeostasis of a wide range of cells and tissues. The FGF/FGFR (FGF receptor) signalling system forms an important paradigm for HS (heparan sulphate)-binding proteins, as both the growth factor and receptor bind to HS, and HS or heparin is an absolute requirement for full signalling. The FGF signalling system has been extremely well structurally characterized, and details of each interaction involved in forming a ternary complex of FGF–FGFR–heparin have been elucidated. Recent work has focused on a more thorough understanding of the nature of the FGF–heparin complex in particular, demonstrating that FGFs preferentially bind to similar sites on the co-receptor, and that FGF–FGFR pairs show greater specificity for heparin sulphation patterns than individual FGFs. Further work has suggested that FGF–FGFR–heparin signalling complexes contain one molecule of heparin only, and that when longer fragments of heparin are used to form FGF–FGFR–heparin complexes, multiple complexes form upon the saccharide. These observations form the basis of a model where the range of interactions that FGFs and FGFRs can form with one another and with HS may lead to the formation of complexes with more than two FGFR units. Therefore HS will be crucial to FGF signalling from the initial signalling event to the formation of large receptor clusters.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3