Effects of protein kinase C activation on the regulation of the stimulus-secretion coupling in pancreatic β-cells

Author:

Arkhammar P1,Nilsson T1,Welsh M1,Welsh N1,Berggren P O12

Affiliation:

1. Department of Medical Cell Biology, Uppsala University, Biomedicum, Box 571, S-751 23 Uppsala, Sweden

2. Department of Endocrinology, Karolinska Institute, Karolinska Hospital, Box 60 500, S-104 01 Stockholm, Sweden

Abstract

Effects of protein kinase C (PKC) activation on the insulin-secretory process were investigated, by using beta-cell-rich suspensions obtained from pancreatic islets of obese-hyperglycaemic mice. The phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA), which is known to activate PKC directly, the muscarinic-receptor agonist carbamoylcholine and high glucose concentration enhanced the phosphorylation of a specific 80 kDa PKC substrate in the beta-cells. At a non-stimulatory glucose concentration, 10 nM-TPA increased insulin release, although there were no changes in either the cytoplasmic free Ca2+ concentration ([Ca2+]i) or membrane potential, as measured with the fluorescent indicators quin-2 and bisoxonol respectively. At a stimulatory glucose concentration TPA caused a lowering in [Ca2+]i, whereas membrane potential was unaffected. Despite the decrease in [Ca2+]i, there was a large stimulation of insulin release. Addition of TPA lowered [Ca2+]i also in beta-cells stimulated by tolbutamide or high K+, although to a lesser extent than in those stimulated by glucose. There was no effect of TPA on either Ca2+ buffering or the ability of Ins(1,4,5)P3 to release Ca2+ in permeabilized beta-cells. However, the phorbol ester inhibited the rise in [Ca2+]i in response to carbamoylcholine, which stimulates the formation of InsP3, in intact beta-cells. Down-regulation of PKC influenced neither glucose-induced insulin release nor the increase in [Ca2+]i. Hence, although PKC activation is of no major importance in glucose-stimulated insulin release, this enzyme can serve as a modulator of the glucose-induced insulin-secretory response. Such a modulation involves mechanisms promoting both amplification of the secretory response and lowering of [Ca2+]i.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3