Binding of the DNA-dependent protein kinase catalytic subunit to Holliday junctions

Author:

DIP Ramiro1,NAEGELI Hanspeter1

Affiliation:

1. Institute of Pharmacology and Toxicology, University of Zürich-Tierspital, Winterthurerstrasse 260, 8057 Zürich, Switzerland

Abstract

DNA-PK (DNA-dependent protein kinase) is a double-strand break sensor involved in DNA repair and signal transduction. In the present study, we constructed site-directed cross-linking probes to explore the range of DNA discontinuities that are recognized by DNA-PKCS (DNA-PK catalytic subunit). A comparison between different substrate architectures showed that DNA-PKCS associates preferentially with the crossover region of synthetic Holliday junctions. This interaction with four-way junctions was preserved when biotin–streptavidin complexes were assembled at the termini to exclude the binding of Ku proteins. The association of DNA-PKCS with Holliday junctions was salt-labile even in the presence of Ku proteins, but this interaction could be stabilized when the DNA probes were incubated with the endogenous enzyme in nuclear extracts of human cells. Cross-linking of the endogenous enzyme in cellular extracts also demonstrated that DNA-PKCS binds to DNA ends and four-way junctions with similar affinities in the context of a nuclear protein environment. Kinase assays using p53 proteins as a substrate showed that, in association with four-way structures, DNA-PKCS adopts an active conformation different from that in the complex with linear DNA. Our results are consistent with a structure-specific, but Ku- and DNA end-independent, recruitment of DNA-PKCS to Holliday junction intermediates. This observation suggests an unexpected functional link between the two main pathways that are responsible for the repair of DNA double-strand breaks in mammalian cells.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3