Incorporation of the 1-pro-R and 1-pro-S hydrogen atoms of ethanol in the reduction of acids in the liver of intact rats and in isolated hepatocytes

Author:

Cronholm T

Abstract

Ethanol oxidation causes redox effects. The coupling of this oxidation via NADH to intermediary metabolism was studied in order to reveal the underlying mechanisms. Isolated rat hepatocytes were incubated with [1,1-2H2]-, (1R)-[1-2H]- and (1S)-[1-2H]-ethanol and the 2H incorporation was measured in lactate, beta-hydroxybutyrate, fumarate, malate, succinate, alpha-oxoglutarate and citrate. The results differed in the following ways from results obtained in intact rats. Lactate became labelled to an increasing extent, and in more than one position, indicating labelling of pyruvate. A small and constant fraction of malate and fumarate was formed without access to [2H]coenzyme. Addition of aspartate increased this fraction, which was concluded to be formed in the mitochondria. Citrate was essentially unlabelled. The 2H from (1R)-[1-2H]ethanol contributed to malate to a larger extent and to beta-hydroxybutyrate to a smaller extent, and 2H from (1S)-[1-2H]ethanol contributed to lactate to a smaller extent. These results indicate that the exchange via shuttle system was less efficient in isolated hepatocytes than in intact rats. The 2H incorporation was independent of concentration of [1,1-2H2]ethanol when this was above 5mM. Additions known to increase ethanol elimination, and cyanamide, which decreases it, had no marked effect on the 2H incorporation. This indicates equilibration of the NADH bound to alcohol dehydrogenase with free NADH. Disulfiram and cyanamide caused a decrease in the relative incorporation from (1S)-[1-2H]ethanol into malate in liver of intact rats. Addition of cyanamide to incubations with hepatocytes resulted in a decrease of the contribution of 2H from (1S)-[1-2H]ethanol in lactate, beta-hydroxybutyrate and malate. This indicates that acetaldehyde was only oxidized in the mitochondrial compartment.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3