Cholesterol binding is a prerequisite for the activity of the steroidogenic acute regulatory protein (StAR)

Author:

Roostaee Alireza1,Barbar Élie1,LeHoux Jean-Guy1,Lavigne Pierre2

Affiliation:

1. Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4

2. Département de Pharmacologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4

Abstract

Steroidogenesis depends on the delivery of cholesterol from the outer to the inner mitochondrial membrane by StAR (steroidogenic acute regulatory protein). However, the mechanism by which StAR binds to cholesterol and its importance in cholesterol transport are under debate. According to our proposed molecular model, StAR possesses a hydrophobic cavity, which can accommodate one cholesterol molecule. In the bound form, cholesterol interacts with hydrophobic side-chains located in the C-terminal α-helix 4, thereby favouring the folding of this helix. To verify this model experimentally, we have characterized the in vitro activity, overall structure, thermodynamic stability and cholesterol-binding affinity of StAR lacking the N-terminal 62 amino acid residues (termed N-62 StAR). This mature form is biologically active and has a well-defined tertiary structure. Addition of cholesterol to N-62 StAR led to an increase in the α-helical content and T° (melting temperature), indicating the formation of a stable complex. However, the mutation F267Q, which is located in the C-terminal helix interface lining the cholesterol-binding site, reduced the biological activity of StAR. Furthermore, the cholesterol-induced thermodynamic stability and the binding capacity of StAR were significantly diminished in the F267Q mutant. Titration of StAR with cholesterol yielded a 1:1 complex with an apparent KD of 3×10−8. These results support our model and indicate that StAR can readily bind to cholesterol with an apparent affinity that commensurates with monomeric cholesterol solubility in water. The proper function of the C-terminal α-helix is essential for the binding process.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3