Plic-1, a new target in repressing epileptic seizure by regulation of GABAAR function in patients and a rat model of epilepsy

Author:

Zhang Yujiao1,Li Zengyou1,Gu Juan1,Zhang Yanke1,Wang Wei1,Shen Hui2,Chen Guojun1,Wang Xuefeng1

Affiliation:

1. Department of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China

2. Department of Physiology and Pharmacology, State University of New York, Downstate Medical Center, Brooklyn, New York, NY, U.S.A.

Abstract

Dysfunction of γ-aminobutyric acid A (GABAA) receptors (GABAARs) is a prominent factor affecting intractable epilepsy. Plic-1, an ubiquitin-like protein enriched in the inhibitory synapses connecting GABAARs and the ubiquitin protease system (UPS), plays a key role in the modification of GABAAR functions. However, the relationship between Plic-1 and epileptogenesis is not known. In the present study, we aimed to investigate Plic-1 levels in patients with temporal lobe epilepsy, as well as the role of Plic-1 in regulating onset and progression of epilepsy in animal models. We found that Plic-1 expression was significantly decreased in patients with epilepsy as well as pilocarpine- and pentylenetetrazol (PTZ)-induced rat epileptic models. Intrahippocampal injection of the PePα peptide, which disrupts Plic-1 binding to GABAARs, significantly shortened the latency of seizure onset, and increased the seizure severity and duration in these two epileptic models. Overexpressed Plic-1 through lentivirus transfection into a PTZ model resulted in a reduction in both seizure severity and generalized tonic–clonic seizure duration. Whole-cell clamp recordings revealed that the PePα peptide decreased miniature inhibitory postsynaptic currents (mIPSCs) whereas overexpressed Plic-1 increased mIPSCs in the pyramidal neurons of the hippocampus. These effects can be blocked by picrotoxin, a GABAAR inhibitor. Our results indicate that Plic-1 plays an important role in managing epileptic seizures by enhancing seizure inhibition through regulation of GABAARs at synaptic sites.

Publisher

Portland Press Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3